

Geotextile design considerations for 'closed' rock bund reclamation structures

United Nations Sustainable Development Goal – to build **resilient infrastructure**, promote inclusive and sustainable industralisation and **foster innovation**

Geotextiles design considerations for 'closed' rock bund reclamation structures

- 1. Project Background
- 2. Geotextile design considerations / lessons learnt
- 3. R&D

Project Background Capital Dredging with the Great Barrier Reef Marine Park CHANNEL UPGRADE RECLAMATION AREA (62ha)

Project Timeline

April 2019

Up to 800,00 tonnes of rock commenced delivery for 2.2km of rock wall

2018
Environmental
approvals
received

March 2020

Start of rock wall construction

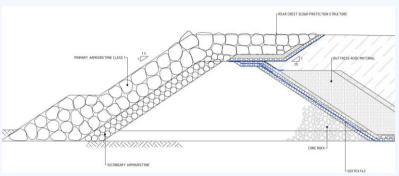
Project Timeline

June 2021
Interim rock bund complete

March 2022

Dredging commences

July 2021
Construction of TUF



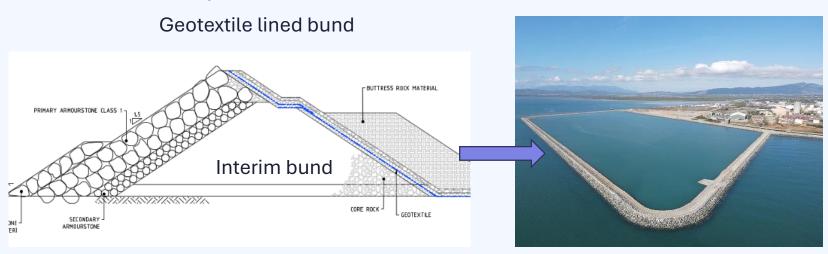
Project Timeline

Permanent structure

October 2024

Permanent rock wall complete

March 2024

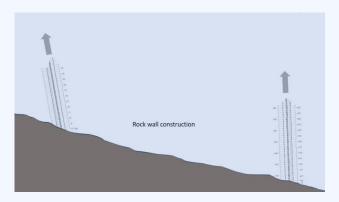

Dredging complete

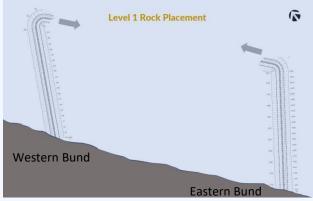
Interim Rock Bund

62ha Of reclamation

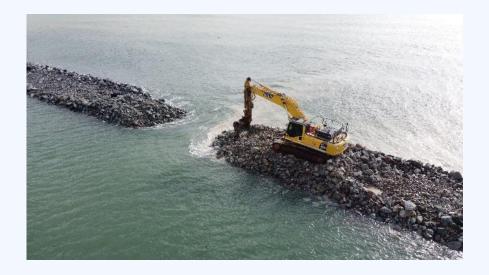
Over 800,000 tonnes of rock

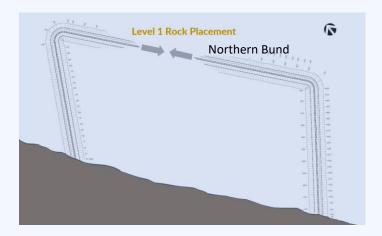
Temporary Unloading Facility

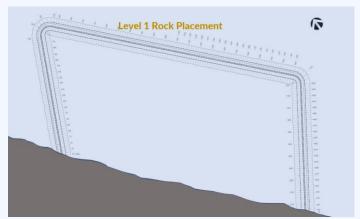




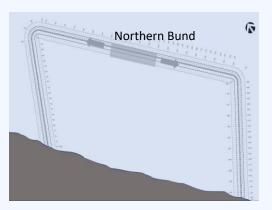
Rock Bund Build

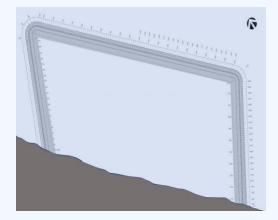




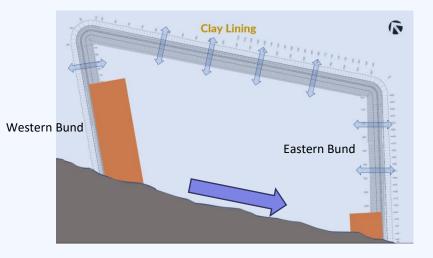


Bund Structure Build

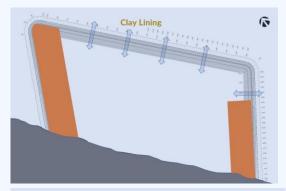


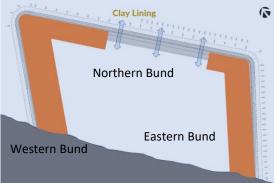


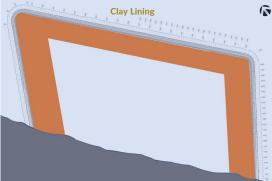
Geotextile lining



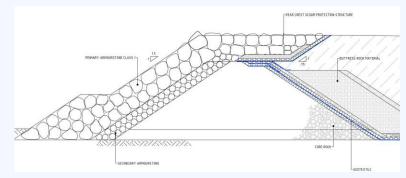
Clay lining



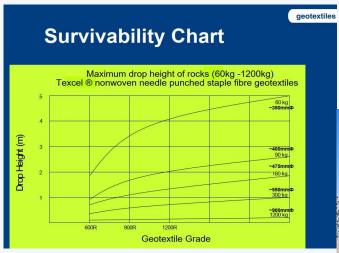




Clay lining



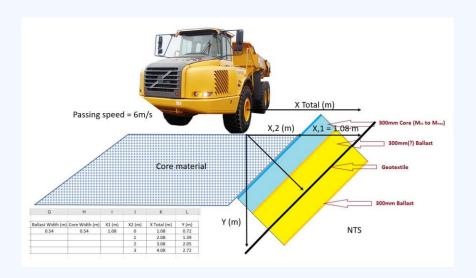
Rear Crest Scour Protection


Geotextiles design considerations for 'closed' rock bund reclamation structures

- 1. Project Background
- 2. Geotextile design considerations / lessons learnt
- 3. R&D

Geotextile Design Considerations

Dry Trials - Testing for Strength/ Elongation

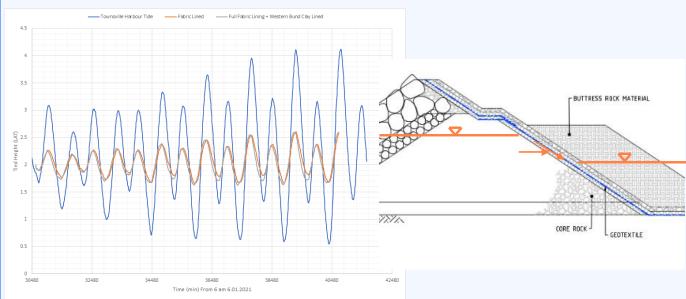


Geotextile Design Considerations

Dry Trials - Testing for Strength/ Elongation

Geotextiles design considerations

1209RP non-woven needle punched geotextile

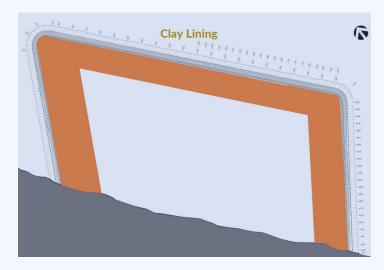

AnAqSimTM

Rock – 1000 m/day 1209RP – 145 m/day Clay lining – 0.001 m/day

Geotextile design considerations

Transmissivity/ permeability and hydraulic stability

Geotextile design considerations Tidal lag estimates


AnAqSimTM

Scenario	Linear Extent of Clay Lining (Chainage, m)	+4.1m LAT Tide	+3.6m LAT Tide	+3.0m LAT Tide
		Predicted Tidal Lag (m)		
1	0	1.5	1.2	0.8
2	550	1.5	1.2	8.0
3	1075	1.8	1.4	0.9
4	1625	2.0	1.5	0.95
5	2177* (fully clay lined)	2.1	1.6	1.0

^{*}values estimated, not modelled

Scenario 1 Fully geotextile lined (no clay)

Scenarios 2 to 5 Progressive clay lining

Geotextile design considerations

Model validation

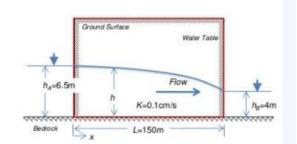
AnAqSimTM

Scenario	Linear Extent of Clay Lining (Chainage, m)	+4.1m LAT Tide	+3.6m LAT Tide	+3.0m LAT Tide
		Predicted Tidal Lag (m)		
1	0	1.5	1.2	0.8
2	550	1.5	1.2	0.8
3	1075	1.8	1.4	0.9
4	1625	2.0	1.5	0.95
5	2177* (fully clay lined)	2.1	1.6	1.0

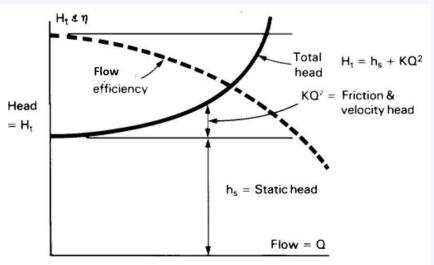
^{*}values estimated, not modelled

Scenario 1 Fully geotextile lined (no clay)

Scenario 2 to 4 Progressive clay lining



Geotextile design considerations


Flow Theory

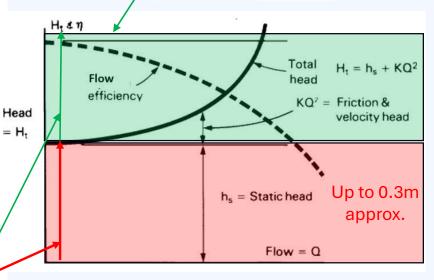
Steady Flow in an Unconfined Aquifer

- K = 10⁻¹ cm/sec
- L = 150 m
- $h_A = 6.5 \text{ m}$
- $h_B = 4 \text{ m}$
- x = 150 m
- Find Q

$$Q = \frac{K}{2} \frac{h_B^2 \quad h_A^2}{L} := \frac{86.4 \quad m/d}{2} \frac{6.5^2 \quad 4^2}{150} := 7.56 \quad m^3/d/m$$

Geotextile design considerations

TEXCEL 1209RP NONWOVEN STAPLE FIBREGEOTEXTILES


The values published in this leaflet are to the best of our knowledge true and correct. The product specification may change at any time without prior notice. No warranty is expressed or implied. Manufactured by Geofabrics Australasia Pty Ltd to the ISO 9001 Quality Management System Standard.

PROPERTY	TEST METHOD	UNITS	VALUE ¹
Fibre Type	Polyester/Polypropylene		
Mass	AS3706.1	g/m ^t	2,200
Thickness	AS3706.1	mm N/m N	12 6000 13,200
Bond Strength of Geocomposite Ply Adhesion	ASTM D7005		
CBR Burst Strength	AS3706.4		
Wide Strip Tensile Strength MD	AS3706.2	kN/m	50
Wide Strip Tensile Strength XMD	AS3706.2 AS3706.2 AS3706.2 BAW Rotating Drum	kN/m % % % Strength Retained	85 100 85 >75
Wide Strip Tensile Elongation MD			
Wide Strip Tensile Elongation XMD			
Abrasion Resistance MD/XMD			
Hydrocarbon (Diesel) Resistance MD/XMD	AS3706.12	% Strength Retained	>90
UV Resistance 500 Hours	AS3706.11	% Strength Retained	>90
Pore Size O95 - Sieve Method	AS3706.7	μm	<75
Permittivity	AS3706.9	S ⁻¹	0.15
Coefficient of Permeability	AS3706.9	m/s x 10-4	16.8
Flow Rate @ 100mm head	AS3706.9	I/m²/s	15

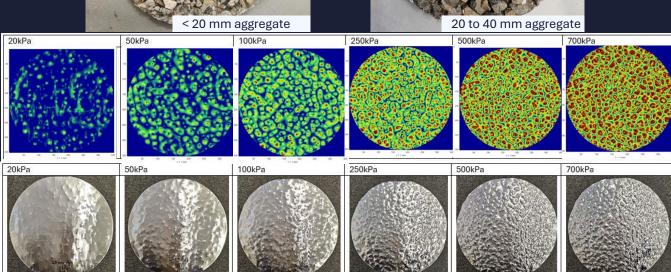
1. All values are typical, 2. MD=Machine Direction, 3. XMD= Cross Machine Direction

Scenario	Linear Extent of Clay Lining (Chainage, m)	+4.1m LAT Tide	+3.6m LAT Tide	+3.0m LAT Tide
1	0	1.5	1.2	0.8
2	550	1.5	1.2	0.8
3	1075	1.8	1.4	0.9
4	1625	2.0	1.5	0.95
Fully clay lined*	2177	2.1	1.6	1.0

*values estimated, not modelled

Geotextiles design considerations for 'closed' rock bund reclamation structures

- 1. Project Background
- 2. Geotextile design considerations / lessons learnt
- 3. R&D



United Nations Sustainable Development Goal – to build resilient infrastructure, promote inclusive and sustainable industralisation and <u>foster innovation</u>

Key conclusions

Limited design guidance available

Geotextile survivability

Permeability of geotextile should be assessed by a suitably qualified hydrogeologist

Modelling construction staging for geotextile lining and clay backing

Geotextile R&D – Watch this space! PIANC Working Group?

Any Questions?

For 75 years, SMEC has built a reputation as a trusted partner on major Transport, Water and Energy projects around the world.

SMEC is committed to positively impact the people, the environment and the clients and communities we serve. Through our network of global specialists, our specialist teams draw on deep expertise and systems thinking to simplify the complex and deliver integrated engineering solutions across a range of diverse environments.

engineering positive change | smec.com